
Solutions - second stage of Israeli students competition, 2017. 

1. A permutation is a bijective function    : 1,2,..., 1,2,...,n n  .  

A permutation is called even if      0
i j

j i 


   and odd otherwise. 

For any permutation   define its displacement    
1

n

i

D i i 


  . 

Which is greater: sum of displacement of all even permutations or sum of 

displacements of all odd permutations? The answer might depend on n .  

 

Answer. For n  even, odd permutation give greater total disparity, for n  

odd, even permutations give greater total disparity. The difference is 

always   11 2nn  . 

Solution. Construct a n n  matrix  ,i jA a , where i  is row and j  is 

column, such that ,i ja i j  . The determinant of this matrix is the sum 

over all permutations of displacement, with sign plus for even 

permutation and sign minus for odd permutation. So the question is about 

the sign of the determinant of this matrix.  

To compute the determinant of this matrix we subtract row 1n   from 

row n  , row 2n   from row  1n  , …, row 2  from row 3, row 1 from 

row 2. For example, we replace matrix  
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with the same determinant. The first row remains the same, but the rest of 

the matrix turns into 1 's, ones below the main diagonal and 1 's 

elsewhere. Now we do the same for columns: we subtract column 1n   

from column n , then column 2n   from column 1n  , . . . , column 3 

from column 2, column 2 from column 1. We get 0 at the top left entry, 1 

at all other entries, and 2  at all entries of the main diagonal except the 

first. We get a matrix C  of the form  

0 1 1 1

1 2 0 0

1 0 2 0

1 0 0 2
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 (of course, 



that is an example 4 4 , but our conclusions are general). Now we add 1
2

 

of rows 2, 3, 4, … , 1n   to the first row. We still have a matrix with the 

same determinant, but now it is lower-triangular, so its determinant is 

easy to compute as: product of its diagonal elements. So the determinant 

is  
11

2
2

nn 
  .  

2. Prove that 
 

 

 
1

1

2 1
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e

nn




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
, for every positive integer n . 

Solution. Consider function  
 

1

1
x

x

x
f x

x 


  (which is well-defined for 

positive x ) .  

The plan of the proof is the following.  

We shall prove that f  is convex. The expression    1f x f x   is the 

average slope in the interval  , 1x x  , so it is grows constantly. We shall 

show that it tends to e , so for any specific x  it is less then e  . 

 

The logarithmic derivative of f  is  
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In other words,    
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It allows to compute the second derivative: 
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We want to say that this expression is nonnegative, and so the function is 

convex. Obviously   0f x  , so it is enough to consider the bracket. 
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Notice, that 
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the convex function is above tangent line). So  
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For large n , the first term tends to e , and the second term is 
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(our approximation is based on Lagrange remainder, which in special 

case of Newton's binomial means that   21 1
2

n n
x nx y

 
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 
, where y  

is between 0 and x ). So, the limit is e , and the slope of convex funcation 

is monotonically increasing, Q. E. D. 

 

3. Is it possible to find a broken line (not necessary closed) inside the unit 

square in plane, such that its length is 10000, and each triangle with 

vertices on the line has  

(a) an angle which is less than 15 ? 

(b) two angles which are less than 15 ? 

Answers. (a) Yes (b) No, not even line of length 2. 

Solution. (a) We shall start with one interval of unit length, placed in the 

middle of a diagonal of a given square. At each stage, we shall replace an 

interval, say AE, by a broken line of 4 equal intervals ABCDE, where 

points B and D are on AE, and CBD 2 CDB  . 

 

Then it is easy to see that CAB 1 CED  . We shall say that the 

rhombus (מעוין) ACEZ is the area controlled by the segment AE.  

The point is, that the rhombi controlled by AB, BC, CD, DE are inside 

the rhombus controlled by AE. So if we repeat the substitution again and 

again, all lines are inside the rhombus controlled by AE. 

Consider 3 points on the broken line, X, Y and Z, in this order. They are 

not in all on the same interval, their come from different quarters of some 



interval. We may assume that at some moment there was an interval AE 

which was broken, X went to one part and Y, Z went to another part or 

parts (there is also the case that Z is one part, X and Y on the other, but it 

is symmetric to our case). If X is in the first quarter AB, consider the two 

straight lines passing through B forming angle 3  with AB. These lines 

divide the plane in 4 parts, two of which are sharp angles. The rhombi 

controlled by BC, CD, DE are in one sharp angle, the rhombus controlled 

by AD is in another, so YXZ 6 . 

If X comes from BC (or rather, its rhombus) we construct similar two 

lines via C, forming angle 5 degrees with BC. In this case we see that 

YXZ 10  (well, one of the lines can be rotated closer to BC, and the 

estimate can be improved, but who cares).  

The case that X comes from CD, and then Y and Z come from DE, is 

similar to the first case. 

Now, each step increases the length of the line   times, where   is 

greater than 1, so for some n  the number n  will be as great as we want, 

which means that after n  iterations the broken line will be as long as we 

want. 

Remark. The line we've constructed is a version of a famous curve called 

Koch snowflake. 

(b) Let A be an endpoint of the broken line. Let us walk from A along the 

line with unit velocity. We claim that we shall all the time increase the 

distance from A. Indeed, if at some point V we shall start getting closer to 

A, then there are points on the broken line, B and C, one before V and 

one after V, at distance AV  , where   is a very small number, and 

points B and C are very close to V. In this case, the triangle ABC is 

isosceles, with a very small A , so the other two angles are almost 90 .  

The velocity vector of our motion at point X can be decomposed into two 

orthogonal components, the radial and the tangent. The radial component 

is along the line AX and is directed outwards. The tangent component is 

orthogonal to AX. Consider the point Y which comes very close after X 

in our motion. The vector XY  is in the same direction as velocity vector. 

The angle YAX  is very small, the angle AXY  is obtuse (קהה), so the 



angle AYX  should be also less than 15 . Actually, AYX  is very 

close to the angle between XY  and AX , therefore the angle between 

AX  and velocity is not greater than 15 . So the larger part of our motion 

is radial and not tangential. Therefore AX  is increased at velocity 

greater than 
1

2
 at least, if we move with unit velocity. So when we pass 

length 2 of the curve, we will get AX 2  so we cannot stay inside the 

unit square. 

4. Let   and   be positive numbers. We construct a symmetric matrix, 

such that at column i  row j  the entry is 
1 1

i j i j 


   
. Show that 

this matrix is positive definite. 

Solution. Consider the measure 
1 1

dx dy

x y  
   on the unit square  

2
0,1 . 

For positive   and  , 

1 1
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1 1 0 0
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 

 
  

 
     . So, each 

function which is continuous on the unit square and therefore bounded, 

can be integrated with this measure. So, for polynomials we may define a 

scalar product    
1 1

1 1

0 0

, , ,
dx dy

f g f x y g x y
x y  

     which is positive-

definite, since no nonzero polynomial is zero on the entire square. Let 

 , i i

ip x y x y , for 1,...,i n .  This polynomials are linearly independent. 

Then 

1 1

1 1

0 0
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, i j i j
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x y i j i j   

 
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      which is 

precisely the entry of the given matrix. So our matrix is a matrix of scalar 

product, so it is positive definite. 

  



5. Let S  be the surface area of the ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
   .  

Prove that 
4

2
3

S

ab bc ca
  

 
. 

Solution. For any vector  , ,x y z  the length of the vector is bounded by 

sum of its projections to the 3 axes: 
2 2 2x y z x y z     . That can 

be easily seen by taking the square. Equality is achieved when the vector 

is in a direction of one of the axes.  

Therefore, for any planar polygon in space, its area is bounded from 

above by sum of its projections to the 3 coordinate planes: xy , xz  and yz  

(since projecting to a plane requires multiplication to the same cosine, as 

projecting the vector orthogonal to the polygon to a complimentary axis). 

So, by integrating the previous statement, for any surface in space its area 

is bounded from above by sum of its projections to the 3 coordinate 

planes, counted with multiplicities (which means that the area of the 

projection which is covered k  times should be taken into account with 

coefficient k ). In our case of ellipsoid, projections are ellipses with 

semiaxes a  and b , a  and c , b  and c , all covered twice, hence  

 2s ab ac bc       

The inequality approaches equality when normal vector at almost all 

points becomes the vector of one of the axes, for instance when c  is 

much smaller than a  and b . 

 

The second estimate for the surface area comes from considering  -

neighborhood of the ellipsoid. For small  , the volume of the set of 

points which are outside the ellipsoid but at distance no more than   from 

it, is  S o  . Denote by    
2 2 2

2 2 2
, , , , 1

x y z
E a b c x y z

a b c

 
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 the 

ellipsoid with semi-axes , ,a b c . Its volume is known to be 
4

3
abc .  



Now consider  , ,E a b c     . We want to explain that is within 

(the closed)  -neighborhood of  , ,E a b c .  

Indeed, every point in the  , ,E a b c      can be presented as 
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, where 2 2 2x y z  . The first summand is 

within  , ,E a b c , the second is of length at most  . So,  

       , , , ,Vol E a b c Vol E a b c S o           
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6. Let  K n  be the greatest possible number of summands in the 

representation 
1 2 3 ... kn a a a a     , such that 

1 2 3 ... ka a a a     are 

positive integers and  
1 2 3| | | ... | ka a a a . Then there exists 0C   such that 

  logK n C n  for any n . 

 

Solution. Let q  be the minimal natural number, by which n  is not 

divisible. 

The we can divide with remainder n sq a  , where a  is the remainder. 

Then take n a  which is divisible by both a  and q . 

We declare 
1a a , replace n  by 

 ,

n a

lcm a q


, and repeat this process as 

long as possible.  

How long does this process last?  

 

We shall use a version of Prime Number Theorem: 
,
 prime

p

log ~

k

p k
p

m

p m



 . 

It can be reformulated as follows:   log lcm 1,2,3,..., 1 ~m m . 

 

Notice that n  is divisible by and hence greater than  lcm 1,2,..., 1q  , so  

 log 2log 2loglogaq q n  . Hence dividing n  by aq  (in logarithmic 

measure, for instance how many digits were erased) is decreasing logn  

by at most 2loglogn . This bound gets stronger as n  gets smaller. So we 

have at least 
log

log
2loglog

n
n

n
 steps. 

 


